Thamir Al-khlaiwi, Aida Korish


The escalating prevalence of Diabetes Mellitus (DM) in Saudi Arabia (SA) is devastating. SA is ranked the second highest country in DM prevalence in the Middle East region and the seventh worldwide. Several factors in SA are strongly correlated with increased blood glucose levels. These include the high ambient temperature, air pollution, decreased walk ability, increased urbanization, consumption of fast-food diet and low vegetables and fruit intake. In addition, the genetic factors, ethnic differences, metabolic risk factors such as obesity and hyperlipidemia have been evidenced to impact the blood glucose levels in Saudis. Consequently, Saudi population or Arabic societies in general might have different levels of Fasting Blood Glucose (FBG) and HbA1C compared to other countries due to the clustering of genetics, ethnicity, hereditary diseases, comorbidities, environmental risk factors, and the changed lifestyle. Unfortunately, lack of large community-sized studies that determine the normal blood glucose levels in the Saudi population based on their genetic, social, and environmental background is noticed. This review aimed to highlight the factors affecting the blood glucose levels in the Saudi population to help the characterization of normal and abnormal levels of blood glucose in this society. The clear understanding of the impact of the different factors on the blood glucose level in Saudis will aid the clinicians toward the proper diagnosis of DM in Saudi patients. In conclusion: the normal and abnormal levels of blood glucose in the Saudi people need to be assessed according to their ethnic, genetic, social, and environmental background. Specific normative guidelines for FBG and HbA1c values in the Saudi population needs to be implemented and utilized in generating a national guideline for DM diagnosis.


Diabetes mellitus; Glucose; Glycosylated hemoglobin (HbA1c); Environmental temperature; Pollution; genetics; FBG.

Full Text:



Al-Khlaiwi T, Alsabih AO, Khan A, Habib SH, Sultan M, Habib SS. Reduced pulmonary functions and respiratory muscle strength in Type 2 diabetes mellitus and its association with glycemic control. Eur Rev Med Pharmacol Sci. 2021;25(23):7363-7368.

Habib SS, Al-Regaiey KA, Al-Khlaiwi T, Habib SM, Bashir S, Al-Hussain F, et all. Serum inducible and endothelial nitric oxide synthase in coronary artery disease patients with Type 2 Diabetes mellitus. Eur Rev Med Pharmacol Sci. 2022;26(10):3695-3702.

International Diabetes Federation . Middle east & north Africa region (MENA) country report-Saudi Arabia. 2022. Available at:

Al Dawish MA, Robert AA, Braham R, Al Hayek AA, Al Saeed A, Ahmed RA,et all. Diabetes Mellitus in Saudi Arabia: A Review of the Recent Literature. Curr Diabetes Rev. 2016;12(4):359-368.

Atlas, Diabetes. "International diabetes federation." IDF Diabetes Atlas, 7th edition. Brussels, Belgium: International Diabetes Federation 33 (2015).

El Bcheraoui C, Basulaiman M, Tuffaha M, Daoud F, Robinson M, Jaber S et all. Status of the diabetes epidemic in the Kingdom of Saudi Arabia, 2013. Int J Public Health. 2014;59(6):1011-21.

Saeedi P, Salpea P, Karuranga S, Petersohn I, Malanda B, Gregg EW et all. Mortality attributable to diabetes in 20-79 years old adults, 2019 estimates: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2020;162:108086.

Alotaibi A, Perry L, Gholizadeh L, Al-Ganmi A. Incidence and prevalence rates of diabetes mellitus in Saudi Arabia: An overview. J Epidemiol Glob Health. 2017;7(4):211-218.

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et all. IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843.

Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol. 2008;28(4):629-636.

Bahijri SM, Al Raddadi RM. The importance of local criteria in the diagnosis of metabolic syndrome in Saudi Arabia. Ther Adv Endocrinol Metab. 2013;4(2):51-9.

Alzahrani AM, Karawagh AM, Alshahrani FM, Naser TA, Ahmed AA, Alsharef EH. Prevalence and predictors of metabolic syndrome among healthy Saudi Adults. The British Journal of Diabetes & Vascular Disease. 2012;12(2):78-80.

BinDhim NF, Althumiri NA, Basyouni MH. Exploring the impact of COVID-19 response on population health in Saudi Arabia: results from the "Sharik" health indicators surveillance system during 2020. Int J Environ Res Public Health. 2021;18(10):5291.

Dawish M, Robert A. Diabetes Mellitus in Saudi Arabia. In: Laher, I. (eds) Handbook of Healthcare in the Arab World. Springer, Cham.2021.

AlMazroa M. Cost of diabetes in Saudi Arabia. In proceedings. 2018 ;4(1):e10566.

Alhowaish AK. Economic costs of diabetes in Saudi Arabia. J Family Community Med. 2013;20(1):1-7.

Treviño G. Consensus statement on the Worldwide Standardization of the Hemoglobin A1C Measurement: The American Diabetes Association, European Association for the Study of Diabetes, International Federation of Clinical Chemistry and Laboratory Medicine, and the International Diabetes Federation: response to the Consensus Committee. Diabetes Care. 2007;30(12):e141.

Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation. Geneva: World Health Organization. 2011. PMID: 26158184.

Khan HA, Sobki SH, Khan SA. Association between glycaemic control and serum lipids profile in type 2 diabetic patients: HbA1c predicts dyslipidaemia. Clin Exp Med. 2007;7(1):24-9.

Alodhayani AA, Almansour AR, Alotaibi JJ, Alghamdi GE, Alageel M, Binabbad R, et all. Relationship Between Hba1c and Complete Blood Count Parameters In Adult Patients With Type 2 Diabetes In Saudi Arabia. International Journal of Advanced Research 2022;10(10):900-6.

Al Hayek AA, Robert AA, Al-Shaikh R, Alhojele M, Aloufi S, Sabri D et all. Factors associated with the presence of diabetic ketoacidosis: A retrospective analysis of patients with type 1 diabetes in Saudi Arabia. Diabetes Metab Syndr. 2020;14(6):2117-2122.

Alahmadi S, Ragaban A, Alblowi S, Aljumail E, Zarif H. Diabetic ketoacidosis; annual incidence and precipitating factors at King Abdulaziz Medical City, Jeddah. The Egyptian Journal of Hospital Medicine. 2018;72(7):4831-4835.

Selvin E, Coresh J, Shahar E, Zhang L, Steffes M, Sharrett AR. Glycaemia (haemoglobin A1c) and incident ischaemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. Lancet Neurol. 2005;4(12):821-6.

International diabetes Federation (2017) IDF Diabetes Atlas Seventh Edition 2017.

Kibirige D, Akabwai GP, Kampiire L, Kiggundu DS, Lumu W. Frequency and predictors of suboptimal glycemic control in an African diabetic population. Int J Gen Med. 2017;20;10:33-38.

Alzaheb RA, Altemani AH. The prevalence and determinants of poor glycemic control among adults with type 2 diabetes mellitus in Saudi Arabia. Diabetes Metab Syndr Obes. 2018;11:15-21.

Almutairi JS, Almigbal TH, Alruhaim HY, Mujammami MH, AlMogbel TA, Alshahrani AM et all. Self-awareness of HbA1c and its association with glycemic control among patients with type 2 diabetes: A multicenter study. Saudi Med J. 2022;43(3):291-300.

World Health Organization. Diabetes Mellitus: Report of a WHO Study Group [meeting held in Geneva from 11 to 16 February 1985]. World Health Organization, 1985. Available at:

American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care. 2022;45:S17-S38.

Jørgensen ME, Bjerregaard P, Borch-Johnsen K, Witte D. New diagnostic criteria for diabetes: is the change from glucose to HbA1c possible in all populations? J Clin Endocrinol Metab. 2010;95(11):E333-6.

Kim CH, Kim HK, Bae SJ, Park JY, Lee KU. Discordance between fasting glucose-based and hemoglobin A1c-based diagnosis of diabetes mellitus in Koreans. Diabetes Res Clin Pract. 2011;91(1):e8-e10.

Zhang X, Gregg EW, Williamson DF, Barker LE, Thomas W, Bullard KM, et all. A1C level and future risk of diabetes: a systematic review. Diabetes Care. 2010;33(7):1665-73.

Alayash AI, Dafallah A, Al-Husayni H, Al-Ali AK, Al-Qourain A, Ramzan Saba M et all. Determination of glycosylated haemoglobin in normal, newborn and diabetic Saudi Arabs. Ann Clin Biochem. 1987;24 (3):279-82.

Khan HA, Ola MS, Alhomida AS, Sobki SH, Khan SA. Evaluation of HbA1c criteria for diagnosis of diabetes mellitus: a retrospective study of 12785 type 2 Saudi male patients. Endocr Res. 2014;39(2):61-5.

Gomo ZA. The determination of glucose and glycosylated haemoglobin in a non-diabetic Zimbabwean African population. Ann Clin Biochem. 1985;22 (4):362-5.

Cook GC. Rapid glucose absorption in Arabs in Saudi Arbia compared with that in Africans in Zambia. Br Med J. 1976;1(6011):688-9.

Anokute CC. Suspected synergism between consanguinity and familial aggregation in type 2 diabetes mellitus in Saudi Arabia. J R Soc Health. 1992;112(4):167-9.

Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014;943162. doi: 10.1155/2014/943162. Epub 2014 Mar 11. Retraction in: Cardiol Res Pract. 2019 Jan 31; 2019:4301528. PMID: 24711954; PMCID: PMC3966331.

Al-Rubeaan K, Al-Manaa H, Khoja T, Ahmad N, Al-Sharqawi A, Siddiqui K et all. The Saudi Abnormal Glucose Metabolism and Diabetes Impact Study (SAUDI-DM). Ann Saudi Med. 2014;34(6):465-75.

Al-Rubean K, Youssef AM, AlFarsi Y, Al-Sharqawi AH, Bawazeer N, AlOtaibi MT et all. Anthropometric cutoff values for predicting metabolic syndrome in a Saudi community: from the SAUDI-DM study. Ann Saudi Med. 2017;37(1):21-30. .

El-Hazmi MA, Al-Swailem AR, Warsy AS, Al-Swailem AM, Sulaimani R, Al-Meshari AA. Consanguinity among the Saudi Arabian population. J Med Genet. 1995;32(8):623-6.

Elhadd TA, Al-Amoudi AA, Alzahrani AS. Epidemiology, clinical and complications profile of diabetes in Saudi Arabia: a review. Ann Saudi Med. 2007;27(4):241-50.

Anokute CC. Suspected synergism between consanguinity and familial aggregation in type 2 diabetes mellitus in Saudi Arabia. J R Soc Health. 1992;112(4):167-9.

Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014;943162. doi: 10.1155/2014/943162. Epub 2014 Mar 11. Retraction in: Cardiol Res Pract. 2019 Jan 31; 2019:4301528. PMID: 24711954; PMCID: PMC3966331.

Al-Rubeaan K, Al-Manaa H, Khoja T, Ahmad N, Al-Sharqawi A, Siddiqui K et all. The Saudi Abnormal Glucose Metabolism and Diabetes Impact Study (SAUDI-DM). Ann Saudi Med. 2014;34(6):465-75.

Al-Rubean K, Youssef AM, AlFarsi Y, Al-Sharqawi AH, Bawazeer N, AlOtaibi MT et all. Anthropometric cutoff values for predicting metabolic syndrome in a Saudi community: from the SAUDI-DM study. Ann Saudi Med. 2017;37(1):21-30.

Environmental Protection in KSA. Available at:

Dendup T, Feng X, Clingan S, Astell-Burt T. Environmental Risk Factors for Developing Type 2 Diabetes Mellitus: A Systematic Review. Int J Environ Res Public Health. 2018;15(1):78.

Climate change knowledge portal. Available at: Accessed at 10/2/2023

Al-khlaiwi TM, Meo SA, Habib SS, Meo IMU, Alqhtani MS. Incense Burning Indoor Pollution: Impact on the prevalence of prediabetes and Type-2 Diabetes Mellitus. Pak J Med Sci. 2022;38(7):1852-1856.

Meo SA, Al-Khlaiwi T, Abukhalaf AA, Alomar AA, Alessa OM, Almutairi FJ, et al. The Nexus between Workplace Exposure for Wood, Welding, Motor Mechanic, and Oil Refinery Workers and the Prevalence of Prediabetes and Type 2 Diabetes Mellitus. Int J Environ Res Public Health. 2020;17(11):3992.

Wang Y, Cao R, Xu Z, Jin J, Wang J, Yang T et all. Long-term exposure to ozone and diabetes incidence: A longitudinal cohort study in China. Sci Total Environ. 2021;151634.

Li YL, Chuang TW, Chang PY, Lin LY, Su CT, Chien LN, et al. Long-term exposure to ozone and sulfur dioxide increases the incidence of type 2 diabetes mellitus among the adult population aged 30 to 50. Environ Res. 2021;194:110624.

Lee M, Ohde S. PM2.5, and Diabetes in the Japanese Population. Int J Environ Res Public Health. 2021;18(12):6653.

Kang N, Chen G, Tu R, Liao W, Liu X, Dong X et all. Adverse associations of different obesity measures and the interactions with long-term exposure to air pollutants with prevalent type 2 diabetes mellitus: The Henan Rural Cohort study. Environ Res. 2022;207:112640.

Meo SA, Al-Khlaiwi T, Aqil M. Impact of the residential green space environment on the prevalence and mortality of Type 2 diabetes mellitus. Eur Rev Med Pharmacol Sci. 2022;26(10):3599-3606. doi: 10.26355/eurrev_202205_28856. PMID: 35647842.

Reynolds W, C.F. Drury C, Yang X, Tan C. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma, Volume 146, Issues 3-4, 2008, Pages 466-474.

Lee AC, Jordan HC, Horsley J. Value of urban green spaces in promoting healthy living and wellbeing: prospects for planning. Risk Manag Healthc Policy. 2015;8:131-7.

Squillacioti G, Carsin AE, Bellisario V, Bono R, Garcia-Aymerich J. Multisite greenness exposure and oxidative stress in children. The potential mediating role of physical activity. Environ Res. 2022;209:112857.

Liu F, Chen G, Huo W, Wang C, Liu S, Li N et all. Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis. Environ Pollut. 2019;252(Pt B):1235-1245.

Fabricio G, Malta A, Chango A, De Freitas Mathias PC. Environmental Contaminants and Pancreatic Beta-Cells. J Clin Res Pediatr Endocrinol. 2016;8(3):257-63.

Yitshak Sade M, Shi L, Colicino E, Amini H, Schwartz JD, Di Q et all. Long-term air pollution exposure and diabetes risk in American older adults: A national secondary data-based cohort study. Environ Pollut. 2023;320:121056.

Guo Y, Gasparrini A, Armstrong BG, Tawatsupa B, Tobias A, Lavigne E et all. Heat Wave and Mortality: A Multicountry, Multicommunity Study. Environ Health Perspect. 2017;125(8):087006.

Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J et all. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet. 2015;386(9991):369-75.

Tarawneh, Q.Y.; Chowdhury, S. Trends of Climate Change in Saudi Arabia: Implications on Water Resources. Climate 2018; 6,8.

Raphael A, Friger M, Biderman A. Seasonal variations in HbA1c among type 2 diabetes patients on a semi-arid climate between the years 2005-2015. Prim Care Diabetes. 2021;15(3):502-506.

Moses RG, Wong VC, Lambert K, Morris GJ, San Gil F. Seasonal Changes in the Prevalence of Gestational Diabetes Mellitus. Diabetes Care. 2016;39(7):1218-21.

Takebayashi K, Yamauchi M, Hara K, Tsuchiya T, Hashimoto K. Seasonal variations and the influence of COVID-19 pandemic on hemoglobin A1c, glycoalbumin, and low-density lipoprotein cholesterol. Diabetol Int. 2022;13(4):599-605.

Speakman JR, Heidari-Bakavoli S. Type 2 diabetes, but not obesity, prevalence is positively associated with ambient temperature. Sci Rep. 2016;6:30409.

Chaabane S, Chaabna K, Doraiswamy S, Mamtani R, Cheema S. Barriers and Facilitators Associated with Physical Activity in the Middle East and North Africa Region: A Systematic Overview. Int J Environ Res Public Health. 2021;18(4):1647.

Noordam R, Ramkisoensing A, Loh NY, Neville MJ, Rosendaal FR, Willems van Dijk Km et all. Associations of Outdoor Temperature, Bright Sunlight, and Cardiometabolic Traits in Two European Population-Based Cohorts. J Clin Endocrinol Metab. 2019;104(7):2903-2910.

Alghamdi AS, Alqadi A, Alghamdi F, Jenkins RO, Haris PI. Higher ambient temperature is associated with worsening of HbA1c levels in a Saudi population. Int J Clin Exp Pathol. 2021;14(8):881-891. PMID: 34527131; PMCID: PMC8414425.

Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE. Brown Adipose Tissue Energy Metabolism in Humans. Front Endocrinol (Lausanne). 2018;9:447.

Pinelli NR, Jantz AS, Martin ET, Jaber LA. Sensitivity and specificity of glycated hemoglobin as a diagnostic test for diabetes and prediabetes in Arabs. J Clin Endocrinol Metab. 2011;96(10): E1680-3.

Chowdhury R, Kunutsor S, Vitezova A, Oliver-Williams C, Chowdhury S, Kiefte-de-Jong JC, et al. Vitamin D and risk of cause specific death: systematic review and meta-analysis of observational cohort and randomised intervention studies. BMJ. 2014;348:g1903.

Bikle D. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009;94(1):26-34.

Al-Shoumer KA, Al-Essa TM. Is there a relationship between vitamin D with insulin resistance and diabetes mellitus? World J Diabetes. 2015;6(8):1057-64.

Bland R, Markovic D, Hills CE, Hughes SV, Chan SL, Squires PE et all. Expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in pancreatic islets. J Steroid Biochem Mol Biol. 2004;89-90(1-5):121-5.

Hewison M. An update on vitamin D and human immunity. Clin Endocrinol (Oxf). 2012;76(3):315-25.

Chagas CE, Borges MC, Martini LA, Rogero MM. Focus on vitamin D, inflammation and type 2 diabetes. Nutrients. 2012;4(1):52-67.

Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006;81(3):353-73.

Manickam B, Neagu V, Kukreja SC, Barengolts E. Relationship between glycated hemoglobin and circulating 25-hydroxyvitamin D concentration in African American and Caucasian American men. Endocr Pract. 2013;19(1):73-80.

Dalgård C, Petersen MS, Weihe P, Grandjean P. Vitamin D status in relation to glucose metabolism and type 2 diabetes in septuagenarians. Diabetes Care. 2011;34(6):1284-8.

Carrillo-Vega MF, García-Peña C, Gutiérrez-Robledo LM, Pérez-Zepeda MU. Vitamin D deficiency in older adults and its associated factors: a cross-sectional analysis of the Mexican Health and Aging Study. Arch Osteoporos. 2017;12(1):8.

Kositsawat J, Freeman VL, Gerber BS, Geraci S. Association of A1C levels with vitamin D status in U.S. adults: data from the National Health and Nutrition Examination Survey. Diabetes Care. 2010;33(6):1236-8.

Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab. 2007;92(6):2017-29.

Mitri J, Muraru MD, Pittas AG. Vitamin D and type 2 diabetes: a systematic review. Eur J Clin Nutr. 2011;65(9):1005-15.

Deleskog A, Hilding A, Brismar K, Hamsten A, Efendic S, Östenson CG. Low serum 25-hydroxyvitamin D level predicts progression to type 2 diabetes in individuals with prediabetes but not with normal glucose tolerance. Diabetologia. 2012;55(6):1668-78.

Grimnes G, Emaus N, Joakimsen RM, Figenschau Y, Jenssen T, Njølstad I et all. Baseline serum 25-hydroxyvitamin D concentrations in the Tromsø Study 1994-95 and risk of developing type 2 diabetes mellitus during 11 years of follow-up. Diabet Med. 2010;27(10):1107-15.

Zoppini G, Galletti A, Targher G, Brangani C, Pichiri I, Negri C et all. Glycated haemoglobin is inversely related to serum vitamin D levels in type 2 diabetic patients. PLoS One. 2013;8(12):e82733.



  • There are currently no refbacks.

Copyright (c) 2024. Thamir Al-Khlaiwi, Aida Korish.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Gomal Medical College, Daraban Road, Dera Ismail Khan, Pakistan

ISSN: 1819-7973, e-ISSN: 1997-2067


Phone: +92-966-747373

Scimago Journal & Country Rank